Biochemical identification of bacteria

Dr. Paul Ingram

Infectious Diseases Physician (RPH) & Microbiologist (PathWest Laboratories)

Outline

- " Phenotypic vs genotypic tests
- " Pros and cons of biochemical tests
- " Basis of biochemical tests
- " Examples of biochemical test
- " Diagnostic algorithms
- The future of biochemical identification tests

Methods of bacterial ID

" Phenotypic

- . Detects the physical properties of bacteria
- . Influenced by gene expression
- . Includes biochemical tests

" Genotypic

- . Detects the genetic code of bacteria (DNA)
- . Not influenced by gene expression

Eg coagulase for staphylococcal ID

" Phenotypic test

Genotypic test

Biochemical ID: Pros and cons

" Pros

- . Cheap
- . Experience with use++
- . Does not require expertise
- . Potentially fast TAT (range: seconds to overnight)

" Cons

- . Biosafety risk (live organisms)
- . Less accurate, less discriminatory
- . Phenotype may be unstable
 - Eg induceable (ie influenced by gene expression)
- . Not possible if organism is slow growing or fastidious
- . Subjective interpretation (less reproducable)

Type of phenotypic ID

- Appearance
 - . Macroscopic
 - . Microscopic (eg gram stain, rod vs coccus)
- " Growth requirement/rate
 - . Media
 - . Atmospheric gases
 - . Temperature
- " Smell
- " Motility
- " Hemolysis on blood agar
- " Biochemical tests

(See lecture on %Gulture characteristics for bacterial identification+)

Basis of biochemical tests

" Important features

- . Standardisation of method
- standardised amount of bacteria used for test (=inoculum)
- . +ve and . ve controls

pH indictors

Colour changes occur at different pHs for different indicators

FIGURE 42.4 Urease test. Tube on the left is positive (*Proteus*); tube on the right is negative. © The McGraw-Hill Companies/Auburn University Photographic Service

"	pH Indicator	pH range	Change from acid to alkaline
	Methyl red Andrades	4-6 5-8	red to yellow pink to yellow
"	Bromescol blue Phenol red	5-6 6-8	yellow to purple yellow to red

Standardisation of the inoculum

- Examples of solid phase:
 - . Loop size (eg 1microL, 10microL)
- " Examples of liquid phase
 - . Turbidity of fluid
 - The ability of particles in suspension to refract and deflect light rays
 - . Optical density
 - . Nephelometry

- High Turbidity

Low Turbidity ——

Positive and Negative controls

- " Positive control: bacteria with known +ve test result
- Negative control: bacteria with known -ve test result
- "If either or both of the controls fail, then the test is not valid

Types of biochemical ID methods

- " Manual vs automated
 - . Automated systems have the advantage of automated reading which improves speed, consistency and removes subjective error.
- " In house vs commercial

Examples of common biochemical tests used for ID of gram negative bacteria

- " Urease
- " Indole
- " Oxidase
- " Glucose fermentation
- " Lactose fermentation
- " Nitrate

Urease

Detects hydrolysis of urea to ammonia by urease enzyme

Ammonia causes an increase in pH which is detected by the pH indicator (orange ->

pink)

- " Urease +ve bacteria:
 - . Proteus
 - . Klebsiella

FIGURE 42.4 Urease test. Tube on the left is positive (*Proteus*); tube on the right is negative. © The McGraw-Hill Companies/Auburn University Photographic Service

Indole

- Detects indole production from tryptophan, which produces a colour change in combination with dimethylaminobenzaldehyde (clear to red)
- " Indole +ve bacteria:
 - . E.coli
 - . Citrobacter

Oxidase

- Detects cytochrome oxidase enzyme that converts dimethylphenyldiamine to indophenol blue (clear to blue)
- " Oxidase +ve bacteria:
 - . Pseudomonas
 - . Vibrio

Glucose fermentation

- Detects ability of bacteria to ferment glucose to pyruvic acid using the Embden Meyerhof pathway
- " Detected by phenol red pH indicator (red/alkaline to yellow/acid)
- "Bacteria that ferment glucose:
 - . E.coli
 - . Proteus

Lactose fermentation

- Detects ability of bacteria to ferment lactose to glucose then to pyruvic acid using the Embden Meyerhof pathway
- " Detected by phenol red pH indicator (red/alkaline to yellow/acid)
- "Bacteria that ferment glucose:
 - . E.coli
 - . Klebsiella

Nitrate

- Detects nitrate reductase enzyme which converts nitrate to nitrite.
- Nitrite then revealed by addition of naphthylamine and sulfinic acid to form diazonium dye (clear to red)
- " Nitrate +ve bacteria:
 - . E.coli
 - . Klebsiella

TSI slope

- Incorporates multiple substrates and pH indicators into 1 tube
- "By streaking bacteria onto surface and stabbing it into media, both aerobic and anaerobic conditions are generated

API

- " Minituarized biochemical reactions in >20 wells
- " Takes 2-24 hrs
- "Reaction profile (%biocode+) compared to an on-line database of >20000 isolates
- " Commerical test

	Tests	Active ingredients	Reactions/enzymes	
1	ONPG	2-nitrophenyl-bD-galactopyranoside	b-galactosidase	
2	ADH	L-arginine	Arginine DiHydrolase	
3	LDC	L-lysine	Lysine Decarboxylase	
4	ODC	L-omithine	Omithine Decarboxylase	
5	CIT	Trisodium citrate	Citrate utilization	
6	H2S	Sodium thiosulphate	H2S production	
7	URE	Urea	Urease	
8	TDA	L-tryptophane	Tryptophane deaminase	
9	IND	L-tryptophane	Indole production	
10	VP	Sodium pyruvate	Acetoin production(Voges Proskauer)	
11	GEL	Gelatine	Gelatinase	
12	GLU	D-glucose	Fermentation/oxidation (Glucose)	
13	MAN	D-mannitol	Fermentation/oxidation (Mannitol)	
14	INO	Inositol	Fermentation/oxidation (Inositol)	
15	SOR	D-sorbitol	Fermentation/oxidation (sorbitol)	
16	RHA	L-rhamnose	Fermentation/oxidation (rhamnose)	
17	SAC	D-sucrose	Fermentation/oxidation (saccharose)	
18	MEL	D-melibiose	Fermentation/oxidation (melibiose)	
19	AMY	Amygladin	Fermentation/oxidation (Amygladin)	
20	ARA	L-arabinose	Fermentation/oxidation (arabinose)	

Automated Biochemical ID systems

" Examples:

- . Vitek
- . Biolog
- . Pheonix
- . Autoscan Walkaway

" Varying capacity for:

- . Number of specimens they can handle
- . Size/extent of comparative database
- . Interfacing with lab data program
- . Turn around time
- . Capacity for ID to species level

Diagnostic algorithms for bacterial ID

- " Primary tests allow genus level ID (enterobacteriacae, ‰on-glucose fermenters+, HACEK, etc)
 - . Gram stain
 - . Culture morphology
 - . Basic biochemical tests
 - " Eg Oxidase, indole, urease tests, etc
- Species level identification requires more complex, second line tests

Example 1 of diagnostic algorithm

	Indole	Methyl red	Voges Proskauer	Citrate	Urease
E.coli	+	+	-	_	-
Enterobacter	_	_	+	+	_
Klebsiella pneumoniae	-	-	+	+	+
Salmonella	_	+	-	+	-
Shigella	_	+	-	-	-
Proteus mirabilis	_	+	-	+/-	+

Example 2 of diagnostic algorithm

Changes in biochemical tests for ID: past and future

- Increased automated and minituarisation
- Increasingly replaced by genotypic tests
- " Is identification necessary: could we manage with susceptibility testing alone?

Conclusions

- " Biochemical tests remain critical to bacterial identification
- Need to understand the principles of the common/primary tests
- " Biochemical tests have limitations
- "In the future they will increasingly be replaced by genotypic tests